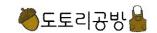
2022 구조물 내진설계 경진대회

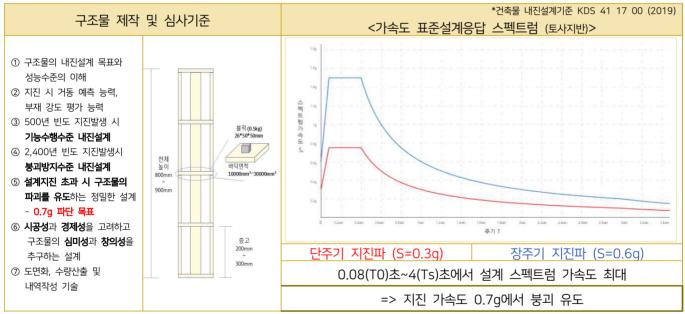

SEISMIC STRUCTURAL DESIGN CONTEST 2022

경북대학교 건축학부 도토리 공방 설계 제안서

CONTENTS

	L	U	N	I	E	N	ı	5	
	01	설계	PRO	OCE	SS				
	1.1	팀	조직	Ē					2
	1.2	설:	계 과정	정					
	02	<u>설계</u>	DES	SIGI	<u> </u>		-		
	2.1	설:	계 개의	3				100	4
	2.2	부	재 선택	택					5
	2.3	내	진 방	법					6
	03	설계	AC	CES	S				
5	3.1	구	조성						8
	3.2	내	진 실험	험					
	04	도면	및 니	내역	서_				
		되	면				<u> </u>		9
		공	정표 등	및 나	역서			1	0

01 설계 PROCESS

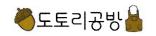

설계 진행과정

1.1 팀 조직도

<자문위원>	장정인(4) - 팀장 및 총괄 - 도면 작성 - 구조물 제작	김세진(4) - 아이디어 제시 - 모형 모델링 - 구조물 제작
	박준범(4) - 구조해석 - PPT 작성	이창희(4) - 물성치 분석 - PPT 작성
경북대학교 건축공학과 신경재 교수님	- 구조물 제작	- 구조물 제작

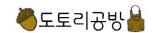
1.2 설계 과정

설계 목표 및 지진파 분석

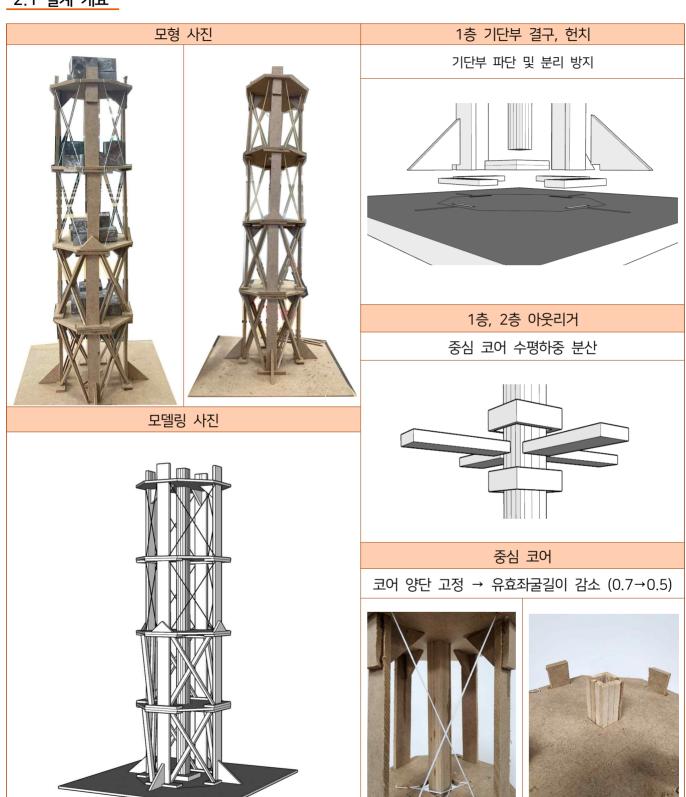

*단주기 설계 스펙트럼 가속도 (Sds) = Sx2.5xFa(1.5)x2/3 *장주기 설계 스펙트럼 가속도 (Sd1) = SxFv(1.5)x2/3

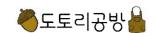
- *설계스펙트럼 가속도 최댓값 (Smax) = 0.6xSds+0.4xSds(Sd1/Ts)
- *지반응답 증폭계수(Fa), 1초 주기 지반응답 증폭계수(Fv)는 1.5(대회 규정)

수행 과정


- 총 7차례에 걸쳐 반복 수행

실험 결과 정리


구분	1차 모형	2차 모형	3차 모형		
	내진, 면진	제진	면진		
내진 방법	MDF Plate로 기둥 강성 증대	TMD를 이용한 제진	텐세그리티를 이용한 면진		
	층 분리로 각 층 개별 거동	다이아그리드 가새로 기둥 보강	실의 길이를 늘려 장주기 구현		
	사례 조사 모형사진	사례 조사 모형사진	사례 조사 모형사진		
모형		TMD (Tuned Mass Damper)	Tensegrity		
평가	구조성 시공성 경제성	구조성 시공성 경제성	구조성 시공성 경제성		
*대회 평가방법	★★★ ★☆☆ ★★★	★☆☆ ★☆☆	★★☆ ★☆☆		
장점	부재의 활용성 높음	미관성 및 창의성	실의 높은 인장력		
단점	각 구멍의 크기가 달라 시공 어려움	많은 접합부로 인한 취약성 진동주기 설계 오류로 TMD역할을 하지 못함	실에 이음부 매듭 발생 → 응력에 취약		
추후 방향	시공성 확보 방안 고려	TMD를 실로 연결한 텐세그리티 사용	면진기둥 길이 축소		
구분	4차 모형	5차 모형	6차 모형		
	면진	내진, 면진	내진, 면진		
내진 방법	텐세그리티를 이용한 면진	중심 코어를 사용한 내진	중심 코어를 사용한 내진		
	실의 길이를 줄임 (3차 모형 비교)	실을 이용한 면진	아웃리거를 통한 하중 분산		
	사례 조사 모형사진	사례 조사 모형사진	사례 조사 모형사진		
모형	Tana a suite	Shinbashira	Outrigger		
평가	Tensegrity 구조성 시공성 경제성	구조성 시공성 경제성	구조성 시공성 경제성		
O' I *대회 평가방법	★★☆ ★★☆ ★★☆	★☆☆ ★☆☆	★☆☆ ★★☆ ★★☆		
장점	면진능력 우수	부재 활용 최대화 접착제 사용 최소화	아웃리거의 하중 분산		
단점	실의 긴장 정도 불균형	코어 강성부족	벨트트러스 구현 어려움		
추후 방향	내진보강에 집중	아웃리거 사용	결구법 사용		



02 설계 DESIGN

아이디어를 통한 디자인

2.1 설계 개요

2.2 부재 선택

카스티리아노 정리
(휨 + 전단)

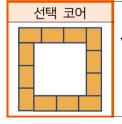
$$\delta = \frac{1}{EI} \int M \frac{\partial M}{\partial P_n} dx + \frac{1}{EA} \int N \frac{\partial N}{\partial P_n} dx + \frac{k}{GA} \int V \frac{\partial V}{\partial P_n} dx$$

본 경진대회 사용 부재는 비교적 길이가 짧은 목재이기에 전단력에 의한 변형에너지의 영향 고려 (축방향력=0)

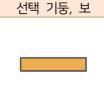
 $E = \frac{4PL^3A + 1275P^2I}{12\delta IA}$

코어 선택

구분	MDF	10x10 (mm)	16x16 (mm)	22x22 (mm)
단면도				
단면 2차 모멘트(I) (mm ⁴)	540	832	5,120	16,320
탄성계수 (E) (N/mm²)	915.4	587	363	163.9
휨강성 (EI)	494.3	488.4	1,858.6	2,674,8



*탄성계수는 5회 실시한 평균탄성계수로 산정 / 록타이트 용량 일정하게 *하중은 부재가 파괴되지 않는 선에서 최대한 가함

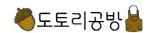

기둥, 보 선택 (물성치 분석)

구분	STRIPx1	STRIPx2	STRIPx3(1) -lx	STRIPx3(1) -ly	STRIPx3(2) -lx	STRIPx3(2) -ly	10x10	MDF
단면도								
단면 2차 모멘트(I) (mm ⁴)	32	256	864	216	656	216	832	540
탄성계수 (E) (N/mm²)	524.7	498.6	854.8	816.1	305.8	470.9	587	915.4
휨강성 (EI) (kN·mm²)	16.79	127.65	738.56	176.3	200.61	176.28	488.4	494.3

*탄성계수는 5회 실시한 평균탄성계수로 산정 / 록타이트 용량은 일정하게

✓ 가장 많은 힘이 필요하기 때문에 강성이 가장 높은 22x22 단면 채택

- ✓ STRIP x 3(1)의 경우 약축에서 매우 약한 강성 결과 값
- ✓ 약축에서도 10x10기둥보다 높은 강성 값이 나온 MDF 기둥 채택


가새 선택

- ✓ 부재 중간을 접착하지 않아 가새의 지지길이를 길게 가져갈 수 있다.
- ✓ 압축으로 인해 생기는 좌굴을 방지하기 위해 각각 2개씩 설치

- ✓ 압축으로 인한 파괴의 염려가 없고, 강한 인장력을 가지고 있다.
- ✓ 서로 거동을 하면서 인장력, 압축력에 강하게 저항 가능

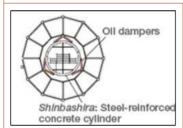
2.3 내진 방법

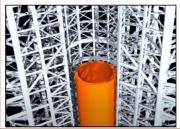
중심 코어

중심 코어

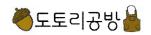
- ✓ 유효율이 높으며, 구조코어로써 가장 융통성 있는 형태
- ✓ 외주 프레임을 내력벽으로 하여 중앙코어와 일체로 한 내진구조 제작 가능
- ✓ 코어가 큰 하중을 부담하므로 장스팬의 구조계획 가능
- ✓ 기둥이 부담하는 하중 분산 및 저감
- ✓ 구조적으로 우수하여 고층빌딩의 전형적인 내진구조 유형

Shinbashira 탑 도쿄 스카이트리


사례분석


- ✓ 지진 발생 시, 중앙 기둥이 거꾸로 된 진자처럼 흔들리며 지진력에 대항
- ✓ 타워와 독립적으로 움직이며 흔들림을 균형있게 조정하고 억제
- ✓ 탑의 맨 위층에서 돌출되어 탑의 끝부분 지지
- ✓ 돌출 코어 : 중앙 기둥을 정확히 고정시켜 유효길이를 줄임

✓ 모티브로, 구조물이 강도를 유지하면서 지진을 견디는 데 필요한 유연성을 가지는 효과를 기대



✓ 본래 사용된 Oil damper 를 실로 제작하여 구현하는 방식 채택

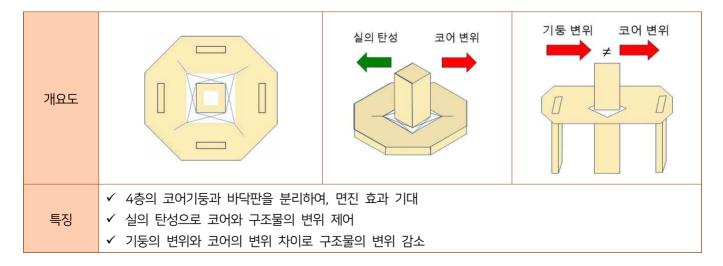
아웃리거 & 벨트트러스

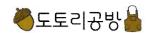
아웃리거	✓ 코어와 외주부 기둥을 연결하여 코어에서 발생하는 모멘트 일부를 외주부 기둥으로 전달하여
이웃니기	효율적인 구조
벨트트러스	✓ 아웃리거에 연결된 외주부 기둥을 하나로 묶어 일체로 거동하게 해서 전체 강성을 증가시켜주
골드드니스	는 벨트트러스 구조

개요도	설명
Water Colors Outgar B Outgar B	 ✓ 끊어지지 않고 하나로 된 중심코어의 모멘트를 외주부 기둥에 전달하면서 경제성을 챙기기 위해 mdf 판을 잘라 1,2층 천장 부근에 결구법으로 끼우는 아웃리거 제작

팔각형 형태의 슬라브

사각형	육각형	팔각형	십각형	원형


원형의 형태와 유사할수록 하중의 분산 효과 상승 시공성을 고려하여 재단이 쉬우면서도 원형과 유사한 팔각형의 평면 채택


결구법을 이용한 접합

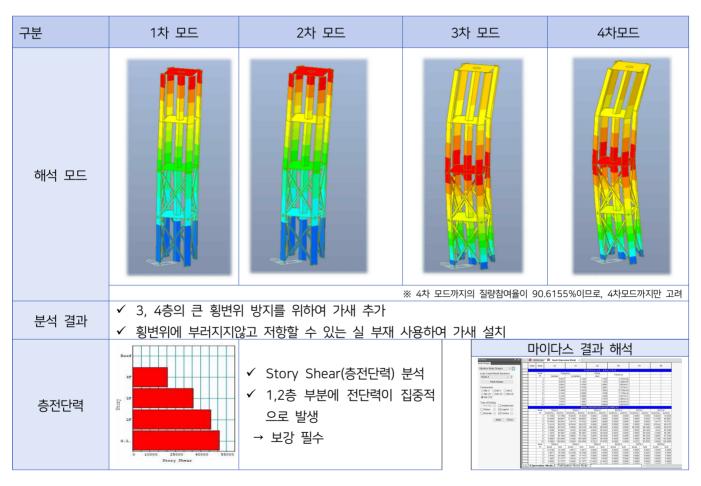
구조 개요	✓ 못을 사용하지 않고 이음과 맞춤이라는 결구 기술을 통하여 부재를 일체화시키는 방법✓ 부재 간의 마찰을 통한 제진 효과 기대
효과	✓ 부재의 낭비 최소화✓ 접착제 사용 최소화✓ 동일 치수 부재 제작시 MDF Plate 사용하면 Strip 사용할 경우보다 재료비 40% 절감

구분	슬래브 기둥, 코어 맞춤	기단부 맞춤	헌치 맞춤	아웃리거 맞춤
세부 사진				

면진 시스템

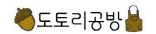
03 설계 ACCESS

설계 모형 분석 평가


3.1 구조성

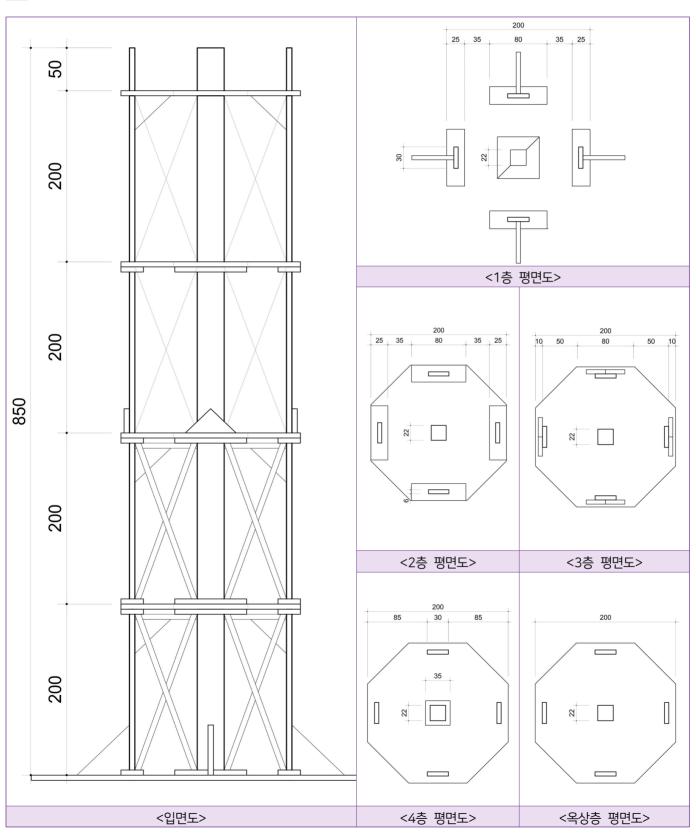
MIDAS gen 입력 변수

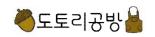
건축물 내진설계기준 KDS 41 17 00 (2019) 참조


구분	0.3g	0.4g	0.5g	0.6g	0.7g	0.8g	
Sds (g)	0.7500	1.0000	1.2501	1.5000	1.7501	2.0001	
Sd1 (g)	0.3000	0.4000	0.5000	0.6000	0.7000	0.8000	
Smax (g)	0.7500	1.000	1.2501	1.5000	1.7501	2.0001	
전이주기 (sec)	T0=0.08, Ts=0.4, TL=3						

MIDAS gen 분석 (S=0.7g)

3.2 내진 실험





04 도면 및 내역서

설계 모형 분석 평가

모형 도면 *단위 (mm)

공정표 및 내역서

• 공정표 : 모형제작 과정

	30min	60min	90min	120min	150min	김세진
MDF 재단						
						박준범
						150
Core 제작						이창희
						900
						TITIOI
주초 및 주두 제작						장정인
Slab 제작						
가새 제작						
모형 조립						
보강재 가공						
연결 및 고정						

• 내역서 : 모형 제작 비용 산정

구분	용도	부재 개수	단위 수량	단가 (백 만원)	가격(백 만원)		
MDF Base	기초판	1	1	-	_		
MDF Plate	Slab	4		100	800		
	기둥	16					
	주초 및 주두	24	0				
	기초판 거셋	4	8				
	작은 거셋	24					
	아웃리거	8					
MDF Strip	코어	1		10	340		
	가새	32	34				
	보강재	24					
면줄	가새	16	10	10	180		
	탄성 댐퍼	1	18				
A4 용지	A4 용지 -		-	-	-		
접착제	접합	1	1	200	200		
합계							